Received: June 24, 1989, accepted August 16, 1989

ZUR KENNTNIS VON KUBISCHEM Rb2[GeF6] (MIT EINER BEMERKUNG ÜBER A3GeF7 MIT A=Rb,Tl SOWIE Tl2GeF6) [1]

F. AVERDUNK und R. HOPPE

Justus-Llebig-Universität zu Gießen, Institut für Anorganische und Analytische Chemie I, Heinrich-Buff-Ring 58, 6300 Gießen (B.R.D.)

SUMMARY

Colourless single crystals of hitherto unknown cubic $Rb_2[GeF_6]$ were obtained by the reaction of CuF₂ with Gepowder in the presence of RbF (in a sealed Cutube): a=858.3 pm, space group Fm3m (Four-Circle diffractometer PW 1100, Fa. Philips, Ag-K_m, 95 Io(hkl), R=13.6%, Rw=6.9%).

Cubic $Rb_2[GeF_6]$ crystallizes isotypic to $K_2[PtCl_6]$ with d(Ge-F) = 179.4 pm. $Rb_2[GeF_6]$ is trimorphic [2] [3]. The Madelung Part of Lattice Energy (MAPLE) is discussed and compared with those for GeF₄ and RbF.

Powder of hitherto unknown Tl₂GeF₇ (tetragonal with a=814.9 pm; c=598.6 pm) and Rb₃GeF₇ (tetragonal with a=807.4 pm; c=589.9 pm), both isotypic to Cs₃GeF₇ [4], are formed similarly. Powder of a new form of Tl₂GeF₅ (trigonal with a=588.9 pm; c=490.9 pm, K₂GeF₆(II)-type)) has been obtained.

ZUSAMMENFASSUNG

Zuvor unbekanntes, kubisches Rb₂[GeF₆] wurde in Form von Einkristallen auf "trockenem Wege" durch die Reaktion von CuF₂ mit Ge-Pulver in Gegenwart von RbF in einer verschlossenen Cu-Bombe erhalten: a=858.3 pm, Raumgruppe Fm3m (Vierkreisdiffraktometer PW 1100, Fa. Philips, Ag-K_T, R=13.6%, Rw=6.9% mit 95 symmetrieunabhängigen Reflexen).

Kubisches Rb₂[GeF₆] kristallisiert im K₂[PtCl₆]-Typ mit d(Ge-F) = 179.4 pm. Rb₂[GeF₆] ist also trimorph [2] [3]. Der Madelunganteil der Gitterenergie, MAPLE, von Rb₂[GeF₆] wird diskutiert und mit dem von GeF₆ und RbF verglichen.

0022-1139/90/\$3.50

Auch wurden Pulverpräparate von bislang unbekannten Tl₃GeF₇ (tetragonal mit a=814.9 pm; c=598.6 pm) und Rb₃GeF₇ (tetragonai mit a=807.4 pm; c=589.9 pm) erhalten. Sie sind isotyp mit Cs₃GeF₇ [4]. Weiterhin wurde erstmals Tl₂GeF₆ (trigonal mit a=588.6 pm; c=490.9 pm, K₂GeF₆(II)-Typ)) als Pulver dargestellt.

EINLEITUNG

Fluoride der Halbmetalle wie K₂[SiF₆] oder K[PF₆] sind in Substanz lange bekannt. Angaben über die Kristallstruktur beziehen sich meist auf Pulver. Diese wie Einkristalle wurden durchwegs aus HF-haltiger Lösung dargesteilt. Zweifei, ob hier nicht gemäß z.B. K₂[SiF_{6-x}(OH)_x] Präparate bzw. Einkristalle entstehen, die nicht "formelrein" sind, werden durch Befunde an z.B. K₂[NbF₇] [5] bestärkt und sind keineswegs ausgeräumt.

Wir haben daher versucht, Einkristalie solcher Fluoride auf trockenem Wege darzustellen. Das ist nicht einfach. Beim Erhitzen findet, wohl auch wegen der Flüchtigkeit der binären Fluoride wie SiF4 oder GeF4, leicht thermische Zersetzung statt [6]. Unsere neue Methode gestattet, z.B. elementares Ge

- im Gemenge mit Fluoriden wie CsF durch CuF2

- direkt durch ternäre Fluoride wie Cs4Cu3F10 [7]

so zu fluorieren, daβ Einkristalle ternärer Fluoride in situ entstehen, z.B. Cs₃GeF₇ [4], ein zuvor unbekanntes Fluorid.

Hier berichten wir über Versuche, analoge Fluoride mit Rb* oder Ti* (in Form von Einkristallen) darzustellen.

ERGEBNISSE UND DISKUSSION

Ausgangsmaterialien, Darstellungsbedingungen, Elgenschaften

Als Ausgangsmaterial wurde benutzt: RbF, Ti₂CO₃ und CuCl₂ (alle Merck, reinst) sowie Ge-Pulver (puriss., Fluka). TlF wurde durch Umsetzung von Ti₂CO₃ mit 40% iger HF und anschließendes Trocknen durch Aufschmelzen dargestellt. CuF₂ erhielt mandurch Fluorierung von CuCl₂ im Fluorstrom, vgl. auch [1].

Alle beschriebenen Fluoride wurden durch die Umstzung von CuF2 mit Ge-Pulver in Gegenwart von AF (A=Tl,Rb) in geschlossenen Cu-Bömbchen erhalten. Die Darstellungsbedingungen im einzelnen: RbzGeFs: Verhältnis RbF:CuFz:Ge = 1:1:1 ; 650°C/2d; Abschrecken (in 6 h)
RbzGeFr: Verhältnis RbF:CuFz:Ge = 2:1:1 ; 550°C/10d; Abkühlrate: 80°C/d
TlzGeFs: Verhältnis TlF:CuFz:Ge = 1:1:1 ; 600°C/6d; Abkühlrate: 200°C/d
TlzGeFr: Verhältnis TlF:CuFz:Ge = 2:1:1 ; 550°C/10d; Abkühlrate: 80°C/d
(Alle Bömbchen waren unter Argon in Quarzampullen eingeschmolzen.)

Die auf diesem Weg dargestellten neuen Fluorogermanate(IV) sind farblos. Sie zeigen an feuchter Luft keine merkliche Reaktion. Die Einkristalle von Rb₂GeF₆ zeigen einen unregelmäßigen Habitus, Durchmesser max. 0.15 mm.

Röntgenographische Untersuchungen

Alle erhaltenen Pulverpräparate sind inhomogen, bzgl. der Fremdreflexe vgl. [1]. Tab. 1 bis Tab. 4 geben die Auswertung der Guinier-de Wolff-Aufnahmen.

Mehrere Einkristalle von Rb₂GeF₆ wurde unter dem Mikroskop ausgesucht und mittels Schwenkaufnahmen voruntersucht. Der geeignetste wurde für die Sammlung der Vierkreisdiffraktometerdaten verwendet.

Die Verfeinerung des Lageparameters x_F und der "anisotropen Temperaturfaktoren erfolgte mittels der Methode "full matrix" least squares, sie endete mit R=13.6% und R_{*}=6.9%. Die relativ schlechten R-Werte lassen sich durch die mäßige Qualität der Einkristalle, die durch Abschrecken erhalten wurden, erklären. Bzgi. der Lageparameter und "anisotropen Temperaturfaktoren" vgl. Tab. 6, Tab. 5 gibt die kristallographischen und röntgenanalytischen Daten .

TABELLE 1

Auswertung der Guinier-de Wolff-Aufnahme von RbgGeFs (CuKai-Strahlung; λ =1.54051A); Vergleichssubstanz T-Quarz a=4.913Å, c=5.405Å

h	k	1	sin ² 0c · 10 ³	sin ² 00 · 10 ³	Ic	Io
1	1	1	24.16	24.13	5.59	8.0
2	0	0	32.22	32,18	0.68	1.0
2	2	0	64.44	64.44	10.00	10.0
3	1	1	88.60	88.53	1.21	2.0
2	2	2	96.66	96.57	3.55	5.0
4	Ō	0	128.87	128.82	4.97	7.0

TABELLE 2

Auswertung der Gu	inier-de Wolff	-Aufnahme von	Rb3GeF7		
(CuKa1-Strahlung;	λ=1.54051Å);	Vergleichssubsta	inz T-Quarz	a=4.913Å,	c=5.405Å

h	k	1	sin ² 0c ·10 ³	sin ² 00 · 10 ³	Ic	Io
0	0	1	17.05	16.97	0.16	1.0
1	1	0	18.20	18.13	0.75	3.0
1	1	1	35.25	35.20	0.09	1.0
2	0	0	36.41	36.43	0.32	2.0
2	1	0	45.51	45.49	1.23	4.0
2	0	1	53.45	53.49	10.00	10.0
2	1	1	62.56	62.60	1.63	4.0
0	0	2	68.20	68.18	2.27	6.0
2	2	0	72.81	72.90	4.13	8.0

TABELLE 3

Auswertung der Guinier-de Wolff-Aufnahme von Tl₃GeF7 (CuKa₁-Strahlung; 1=1.54051A); Vergleichssubstanz T-Quarz a=4.913A, c=5.405A

h	k	1	sin ² Oc·10 ³	sin ^s ⊖₀·10 ³	Ic	Io
0	0	1	16.56	16.57	0.17	1.0
1	1	0	17.87	17.94	0.05	0.5
1	1	1	34.42	34.39	0.69	2.0
2	1	0	44.67	44.67	1.84	3.0
2	0	1	52.29	52.17	10.00	10.0
2	1	1	61.22	61.29	2.48	6.0
0	0	2	66.22	66.16	2.66	6.0
2	2	0	71.47	71.36	3.28	8.0

TABELLE 4

Auswertung der Guinier-de Wolff-Aufnahme von TlaGeFs (CuKa1-Strahlung; λ =1.54051A); Vergleichssubstanz T-Quarz s=4.913A, c=5.405A

h	k	1	sin ^s Oc·10 ²	sin ^s ⊖₀·10 ³	Ic	Io
1	0	0	22.83	22.90	0.68	5.0
1	0	1	47.45	47.58	10.00	10.0
0	1	1	47.45		1.02	
1	1	0	68.50	68.60	5.90	9.0
2	0	0	91.34	91.50	0.69	4.0
1	1	1	93.12	93.24	0.09	1.0
1	1	-1	93.12		0.09	
0	0	2	98.48	98.47	0.75	5.0
2	0	1	115.96	116.15	1.28	8.0

TABELLE 5

Rb2GeFs, kristallographische und röntgenanalytische Daten

Kristallsystem	kubisch
Raumgruppe	Fm 3 m (Nr. 225)
Gitterkonstanten in pm	1: 2:
[1:Guinier-de Wolff-Daten 2:Vierkreisdiffraktometerdaten]	a = 858.25(6) $a = 859.2$
(Standardabweichung in Klammern)	
Dichte (röntgenographisch, g.cm ⁻³)	3.76
Zahl der Formeieinheiten pro Elementarzelle	4
Molares Volumen:	
(Summe der binären Komponenten, cm³)	104.12
(röntgenographisch, cm³)	95.12
Kristallform, -farbe	unregelmäβig, farblos
F(000)	640
lin. Absorptionskoeffizient μ (Mo-K _a , cm ⁻¹)	108.8
Diffraktometer	Vierkreis (Philips, PW 1100)
Strahiung, Monochromator	Ag-Ka ($\lambda = 0.5609$ Å), Graphit
Korrekturen der Intensitäten	Polarisations-, Absorptions-
	korrektur, Lorentzfaktor
Meßbereich	3° ≤ θ ≤ 26°
Abtastung, Abtastbreite, -geschwindigkeit	ω-scan, 3.6°, 0.12°/sec
Anzahl der symmetrieunabhängigen Reflexe	95
nicht berücksichtigte Reflexe	keine
Lösungsverfahren	Patterson- u. Differenzfourier-
-	Synthesen
Parameterverfeinerung	"full-matrix" least squares.
	anisotrope Temperaturfaktoren
$\mathbf{R} = \Sigma [\mathbf{F}_0 - \mathbf{F}_0] / \Sigma \mathbf{F}_0 $	13.61%
$\mathbf{R}_{\mathbf{v}} = \Sigma \sqrt{\mathbf{w}} \left[\mathbf{F}_{\mathbf{v}} \right] - \left[\mathbf{F}_{\mathbf{v}} \right] / \Sigma \sqrt{\mathbf{w}} \left[\mathbf{F}_{\mathbf{v}} \right]$	6.93%
Wichtungsfaktor w	1.5831/[σ ² (F ₀)+0.0·F ₀ ²]

TABELLE 6

Lageparameter und "anisotrope Temperaturfaktoren" von Rb₂GeF₅ (in Klammern: Standardabweichungen in Einheiten der letzten Stelle)

	Lage	x/a	у/ъ	z/c	Աւ	U22	Us 3	Uz 3	U1 3	Մեջ
Ge	48	. 0000	.0000	.0000	193(14)	193(14)	193(14)	0	O	0
Rb	8c	. 2500	.2500	. 2500	250(11)	250(11)	250(11)	0	0	0
F	24e	.2090(11)	.0000	,0000	111(59)	435(49)	435(49)	0	0	0

Der "anisotrope" Temperaturfaktor hat die Form: exp $[-2n^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^*b^*)];$ Koeffizienten der Temperaturfaktoren in pm².

Die Auswertung der Guinier-de Wolff-Aufnahmen erbrachte die folgenden Gitterkonstanten: Tl3GeF7: a=814.9(1) pm; c=598.3(1) pm; c/a=0.7346 ((NH4)sF[SiF6]-Typ) Rb3GeF7: a=807.4(1) pm; c=589.9(1) pm; c/a=0.7306 ((NH4)sF[SiF6]-Typ) (Cs3GeF7: a=840.2(1) pm; c=625.3(2) pm; c/a=0.7442 [4]) Tl2GeF6: a=588.59(8) pm; c=490.90(8) pm (K2GeF6(II)-Typ) c/a=0.8340 (statt c/a=0.8288 bei K2GeF6) Rb2GeF6: a=858.26(6) pm (K2PtCls-Typ)

ERGEBNISSE

Die vorliegende Untersuchung zeigt, daß Rb₂GeF₆, garantiert frei von OH⁻, im K₂PtCl₆-Typ kristallisiert. Eine eingehende Strukturbeschreibung erscheint nicht notwendig, bzgl. der Abstände und Koordinationsverhältnissen vgl. Tab. 7. Die molaren Volumina von Rb₂GeF₆ sind 88.6 cm³/mol (Raumgruppe P6₃mc), 84.6 cm³/mol (Raumgruppe P-3ml) bzw. 95.1 cm³/mol (Raumgruppe Fm3m). Die Berechnung des Madelunganteils der Gitterenergie, MAPLE [8] zeigen, daß die Abweichung Σ ternär - Σ binär +1.8% beträgt, vgl. Tab. 8. Bzgl. möglicher Ursachen vergleiche [1] und [9].

TABELLE 7

Motive der gegenseitigen Zuordnung, ECoN und MEFIR bei Rb2GeF6 (Abstände in pm)

	F	CN	ECoN	MEFIR	ECoN	MEFIR
			Kat/F	Kat/F	Kat/2	Kat/2
Rb	12/4	12	12.0	172.5	13.0	173.8
	305.5					
Ge	6/1	6	6.0	46.4	6.0	46.4
	179.4					
CN	5					
ECoN						
Kat/F	5.0					
Kat/Σ	8.8					
MEFIR						
Kat/F	133.0					
Kat/S	129.8					

Aus den nach dem ECoN-Konzept gewichteten Abstandsmitteln folgen mit r(F)= 133 pm als Startwerte: r(Rb)= 172.6 pm und r(Ge)= 46.4 pm.

486

	n	binär	ternär	Δ	n۰۵
Rb	 2	102.8*)	102.4	-0.4	-0.8
Ge	1	1791.0 ^{b)}	1797.0	+6.0	+6.0
F	2	102.8 ^{a)}	160.7	+57.9	+115.8
F	4	178.0 ^{b)}	160.7	-17.3	-69.2
Σ	 	2914.2	2966.0		+51.8 =+1.78%

TABELLE 8 MAPLE-Werte von RbzGeF6 in kcal.mol-1

SCHLUSSBEMERKUNG

Mit Versuchen zur Züchtung von Einkristallen der Fluoride Tl2GeFs und Tl3GeF7 bzw. Rb3GeF7, letztere offenkundig zum (NH4)3F[SiF6]-Typ gehörend, sind wir beschäftigt. Eine Abschätzung der Parameter aus den Pulverdaten halten wir daher für unnötig, weil zu ungenau.

DANKSAGUNG

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemie, dem Bayerwerk Leverkusen sowie der Fa. Degusssa, Hanau, für die wertvolle Unterstützung mit Geld- und Sachmitteln.

Die Rechnungen erfolgten am Rechenzentrum der Justus-Liebig-Universität Gießen. Die Sammlung der Io-Daten besortge Herr Dr. Mike Serafin.

LITERATUR

1 F. Averdunk, Teil der Dissertation, Gießen 1989. 2 H. Bode und R. Brockmann, Z. Anorg. Allg. Chem., 269 (1952) 173. 3 J.L. Hoard und W.B. Vincent, J. Am. Chem. Soc., 64 (1942) 1233. 4 F. Averdunk und R. Hoppe, J. Less-Common Metals, 146 (1989) 137 5 C.C. Torrardi, L.H. Brixner und G. Blasse, J. Solid State Chem., 67 (1987) 21 6 L. Kolditz, W. Wilde und W. Hilmer, Z. Anorg. Allg Chem., 512 (1984) 48 7 D. Kissel und R. Hoppe, Z. Anorg. Allg. Chem., <u>561</u> (1988) 12

8 R. Hoppe, Angew. Chem., <u>78</u> (1966) 52
Angew. Chem. Int. Ed., <u>5</u> (1966) 95
Adv. Fluorine Chem., <u>6</u> (1970) 387
in: Crystal Structure and Chemical Bonding in Inorganic Chemistry
S. 127, Amsterdam 1975
Angew. Chem., <u>82</u> (1970) 7
Z. Anorg. Allg. Chem. <u>283</u> (1956) 196
Izvj. Jugoslav. centr. krist. Zagreb, <u>8</u> (1973) 21
9 F. Averdunk und R. Hoppe, Z. Anorg. Allg. Chem., im Druck.